Late stages of deformation and exhumation of an orogen constrained by fission-track data: A case study in the Western Alps

B. Fügenschuh
S.M. Schmid

Department of Earth Sciences, Basel University, Bernoullistrasse 32, 4056 Basel, Switzerland

ABSTRACT

New zircon and apatite fission-track data, combined with a structural analysis, provide constraints regarding the large-scale tectonic evolution of part of the French/Italian Alps. The observed migration of cooling toward more external units is interpreted to be due to thrust propagation. In the absence of significant amounts of crustal thinning, the exhumation has been dominantly by erosion.

The most internal unit investigated (the Penninic Houilleré zone) started to cool at ca. 35 Ma, after an earlier tectonometamorphic event that only affected Penninic units. Fission-track data from the Cheval Noir unit (replacing the Valaisan unit in the south) constrain the age of metamorphism in these frontal Penninic units to be older than 32 Ma. There, cooling started with the onset of a second stage of the tectonic evolution, i.e., with top-to-the-west-northwest movement along the Roselend thrust at ca. 32 Ma. This Oligocene to early Miocene thrusting led to burial and metamorphism in the external massifs and their cover (Dauhinois unit). During a third tectonic stage, thrust-related culminations formed in the external massifs. Between 20 and 15 Ma, this stage led to the onset of exhumation in the Dauhinois and in the northern frontal Penninic units (Valaisian units), caused by erosion that followed tilting in the backlimb of these culminations. Northward-increasing amounts of Miocene–Pliocene shortening in front of and below the external massifs led to significantly higher amounts of exhumation in the north. Finally, and in very recent times (post-5 Ma), the frontal thrust of the Houilleré zone was reactivated as a normal fault with moderate offset (<3 km).

Keywords: fission-track dating, Western Alps, low-grade metamorphism, cooling history, exhumation history.

INTRODUCTION

Deciphering the cooling and exhumation history of rocks by means of geochronological data has become a common tool applied to a wide range of geologic settings. Therefore, fission-track (FT) analysis still forms one of the most promising methods with respect to the near-surface and/or low-temperature part (i.e., from ~320 °C to ~60 °C) of the cooling history.

FT analysis does not date cooling through a “closure temperature” (Dodson, 1973). Instead, FT studies make extensive use of the “partial annealing zone” (PAZ) concept (Wagner, 1972; Wagner and Van den Haute, 1992). Together with modeling methods (e.g., Gallagher, 1995; Willett, 1997), such FT analysis provides details concerning the cooling rates over the entire temperature range that defines the PAZ. In this work the PAZ temperature ranges are taken to be 60–120 °C for apatite (Green et al., 1989) and 200–320 °C for zircon (Tagami et al., 1998). Further, when determining a singular temperature (T) vs. time (t) point during cooling (e.g., when providing a “central age”), mean values of 90 °C (apatite) and 260 °C (zircon) are used.

The French-Italian Western Alps represent a spectacular young and still-evolving, high-relief orogen that comprises numerous tectonic units, many with distinct structural and thermal histories (e.g., Debelmas and Kerckhove, 1980; Choukroune et al., 1986; Ricou and Siddans, 1986; Platt et al., 1989). In such a setting, conclusions drawn from a local data set may not be valid for neighboring areas. A dense data set over a reasonably wide area is required for FT analysis, and the FT data must be supported with tectonic and stratigraphic control. Both requirements are met in this study.

GEOLOGIC SETTING

The investigated area extends from the Aosta valley (Italy) in the northeast to the Arc valley (France) situated ~100 km farther to the southwest. From internal to external (i.e., tectonically shallower to deeper), the following tectonic units are involved: Houilleré zone (part of the Briançonnais units), Valaisian, Cheval Noir flysch, and Dauphinois (Figs. 1 and 2).

The area is governed by two major tectonic boundaries, namely the “Roselend thrust,” also referred to as “Pennine front” (e.g., Mugnier et al., 1993) or “Penninic frontal thrust” (e.g., Schmid and Kissling, 2000), and the “Houiller front” (Figs. 1B and 2), both imaged in the ECORS-CROP (Etude de la Croûte continentale et Océanique par Réflexion Sismique-progetto della Crosta Profonda) seismic line (Roure et al., 1996). This paper uses the term “Roselend thrust,” proposed by Ceriani et al. (2001), to refer to a west-northwest–directed late (post-Priabonian) thrust, whereas “Penninic basal contact” is used to denote the boundary between Penninic and Helvetic/Dauhinois units in general (Fig. 1A). The term “Houiller front” (Fig. 2) simply denotes the western margin of the Houilleré zone (e.g., Fügenschuh et al., 1999).

The most internal tectonic unit studied is the Middle Penninic Houilleré zone (e.g., Escher et al., 1997). It is predominantly made up of Carboniferous–Permian sedimentary rocks with a minor Alpine metamorphic overprint that ranges from epizonal to lower greenschist facies in the more internal parts (Debelmas, 1989; Frey et al., 1999; Ceriani,
characterized by high-pressure–low-temperature (e.g., Fu¨ genschuh et al., 1999; Loprieno, 2001), are char-
deposited onto an oceanic basement (Fu¨ gen-
however, identical postrift sedimentary rocks,
overlain by postrift sedimentary rocks of Bar-
eroded carbonate platform unconformably
2001). The external Valaisan represents an
ist-facies metamorphism (Goffe´ and Bousquet,
 DNA from this unit
so far.
Fig. 2) are derived from the more external North Penninic (or Valais) oceanic basin (Trümpy, 1955; Frisch, 1979).
Two different domains have been distin-
guished (Fügenschuh et al., 1999; Loprieno,
1. The external Valaisan represents an
ered carbonate platform unconformably
overlain by postrift sedimentary rocks,
deposited onto an oceanic basement (Fügen-
shuch et al., 1999; Loprieno, 2001), are char-
acterized by high-pressure–low-temperature
metamorphism (Schürch, 1987; Goffé and
bouquet, 1997). Available geochronolog-
data include Ar/Ar and Rb/Sr phengite ages
brianc¸ onnais units by means of illite
bier, 1948). Ceriani (2001) determined a high-
grade of Alpine metamorphism (Fu ¨ genschuh et al., 1999; Loprieno,
so far.
The Valaisan units (Fig. 2) is characterized by the
following stages: (1) subduction of the North Penninic (or Valais) trough, followed by final
collision between Brianc¸ onnais-Subbrianc ¸ on-
Penninic (or Valais) trough, followed by final
collision between Brianc¸ onnais-Subbrianc ¸ on-
Penninic paleogeographical domain by Ceri-
nique used in this study) are affected by the
as a major factor for zircon.
 Thermal information, particularly the young-
est clusters of ages, is interpretable in samples
 displays a large spread in single-grain ages
(e.g., Seward and Rhoades, 1986; Green,
1989; Brandon and Vance, 1992; Sobel and
Dumitru, 1997; Brandon et al., 1998).
Single-grain age distributions are not only
due to the different track retentivity of the in-
dividual grains within one sample, as will be
assumed in the forthcoming discussion, but also
to statistical and geometrical factors. The
Poisson error results from the relatively low
number or strongly skewed statistical ratios of
counted tracks, whereas the geometrical error
is related to the inhomogeneous distribution of
tracks across the Western Alps (e.g., Fügenschuh et
al., 1999; Sue et al., 1999).

ANALYTICAL PROCEDURE

Eighty-two samples were analyzed. A list
of samples is available.1

INTERPRETATION OF SINGLE-GRAIN FISSION-TRACK DATA

FT data can be interpreted through a com-
parison of an apparent age and track-length
measurements (Gleadow et al., 1986). On the
basis of numerous annealing studies of FTs
in standards and test samples (e.g., Green et al.,
1986; Laslett et al., 1987; Crowley et al.,
1991), thermal histories can be modeled from
track lengths (e.g., Gallagher, 1995; Willett,
1997). Single-grain age distributions (the
technique used in this study) are affected by the
distinct annealing behavior of individual
gains. The dependence of FT annealing on
chemical composition is well known for apa-
tite, especially in respect to its F/Cl ratio (e.g.,
Gleadow and Duddy, 1981; Green et al.,
1986). Differences in zircon annealing char-
acteristics are less understood, but composi-
tional variation likely plays a minor role be-
cause of zircon’s restricted compositional
range (e.g., Brandon and Vance, 1992). Zircon
etching properties are not significantly affect-
ed by variations in Hf, the main substitute for
Zr (Krishnaswami et al., 1974). A systematic
study has not been made, although Kasuya
and Naeser (1988) showed that thermal sta-
bility of FTs in zircon decreases with increas-
ing α-radiation damage and that the density of
α-recoil tracks appears to be the controlling
factor for zircon.

A second scenario (Fig. 3B) involves slow
cooling of previously fully annealed samples;
for zircon FT analysis, temperatures must
have exceeded 320 °C for full annealing (e.g.,
Tagami et al., 1998). During slow cooling (a
few degrees per million years), individual
gains with distinct amounts of α-radiation
damage are thought to cause differences in
track retention (Kasuya and Naeser, 1988). If
it can be assumed that the sample includes in-
dividual zircon grains with maximum (~320
°C, corresponding to the upper limit of the zir-

1 GSA Data Repository item 2003xxx, apatite and zircon fission-track samples and analytical details and
data, is available on the Web at http://www.
geosociety.org/pubs/ft/2003.htm. Requests may also
be sent to editing@geosociety.org.
con PAZ) and minimum (200 °C, corresponding to the lower limit of the zircon PAZ) track-retention temperatures, and if the closure-temperature concept of Dodson (1973) is valid, the oldest and youngest single grains date the passage of the sample through both ends of the PAZ (times t_1 and t_2 in Fig. 3B). However, the retention temperatures of the zircon grains analyzed in a particular sample are unlikely to cover the entire temperature interval associated with the PAZ. Hence, the oldest and youngest grains may only yield minimum and maximum ages for t_1 and t_2, respectively.

A further scenario (Fig. 3C) involves sedimentation and lithification, followed by metamorphism and cooling, peak-metamorphic temperatures (at t_m) being situated midway within the PAZ. By sampling contact-metamorphosed sedimentary rocks around a pluton, Tagami and Shimada (1996) provided a well-documented example illustrating this case. The youngest single-grain ages found in partially annealed samples turned out to be identical with the zircon FT central age of the fully annealed samples. Hence, the youngest single-grain ages from partially annealed samples may represent cooling ages. In the case of Figure 3C, this cooling age t_2 applies to the lower temperature limit of the PAZ and post-dates the peak of metamorphism at t_m.

Figure 3D depicts a two-stage cooling history. From the single-grain age distributions alone, this scenario is indistinguishable from...
Figure 3. Simple thermal histories together with possible single-grain age distributions shown as radial plots (Galbraith, 1990); t_c—central age (Galbraith and Laslett, 1993). Note that temperature (T) increases in a downward direction. (A) Deposition followed by lithification and then minor heating; t_s—stratigraphic age, t_{P_1} and t_{P_2} refer to the inherited ages of detrital populations 1 and 2, respectively. (B) Slow cooling through the entire PAZ. (C) Same as A, but thermal peak situated within the PAZ at t_m. (D) Two-stage cooling history. For further explanations, see text.
that of Figure 3B. The interpretation of the youngest and oldest single-grain ages, however, is identical.

PRESENTATION AND DISCUSSION OF FISSION-TRACK DATA

Houiller Zone

The FT data from the 33 Houiller zone samples (locations in Fig. 2) cover some 80 km along strike and are mostly located within 1 km of the Houiller front (Fig. 2). Three samples (01, 02, and 94) are located in the immediate footwall of a late normal fault overprinting the Houiller front (Fig. 2). All other samples are located in its hanging wall. FT ages on apatite range between 18 and 4.3 Ma; those on zircon fall between 98 and 19 Ma. Generally, older ages are observed in the south (Fig. 2).

The along-strike profile of Figure 4 displays FT ages and zircon single-grain age distributions from Houiller zone samples. Apatite FT ages range between 13 and 7.1 Ma in the north and slightly increase to values between 16 and 18 Ma in the farthest-south samples. Zircon ages, however, increase significantly from ca. 20 Ma in the north to almost 100 Ma in the south. Samples yielding old central ages are characterized by a large spread in single-grain ages and by their failure of the chi-square test (Table DR1). Hence, it is concluded that this marked increase in zircon central ages mainly reflects a change from fully annealed samples in the north to only partially annealed samples in the south.

Illite crystallinity (IC) data from the southern part of the Houiller zone (Ceriani, 2001) indicate epizonal conditions, whereas the zircon FTs are only partially annealed in the same area (Fig. 4). Hence, metamorphic temperatures were above 270 °C, as indicated by the IC data (lowermost possible limit of the epizone, Ferreiro-Mählmann, 1996), but below 320 °C (upper temperature limit of the zircon PAZ, Tagami et al., 1998), according to the large spread in zircon single-grain ages in the southern Houiller zone. For the reconstruction of the temperature vs. time (T-t) path discussed later (Fig. 5), a mean temperature of 295 °C was chosen. In the northern part of the Houiller zone, no exact temperature estimates are available. The fully annealed zircon samples indicate temperatures in excess of 320 °C. Freeman et al. (1998) provided an upper temperature limit of 450 °C for this area, based on mineral assemblages. The T-t paths discussed subsequently assume a T_{max} of 400 ± 50 °C for the northern part of the Houiller zone.

Possible T-t histories for the Houiller zone are illustrated in Figure 5A. For the northern Houiller zone, a T-t path may be derived by using the zircon (260 °C) and apatite (90 °C) FT central ages only (solid line). Alternatively, the T-t path can be constructed by additionally using the information provided by the single-grain ages (cf. Fig. 5B). This T-t path (dashed line) assumes that the oldest and youngest zircon single-grain ages date cooling through 320 °C and 200 °C, respectively (see Fig. 3B). By linearly extrapolating a constant cooling rate above 320 °C, the estimated peak-metamorphic temperatures of 400 ± 50 °C are inferred to have started to decrease no later than 35 Ma. Note that the T-t path, which is solely derived by using the zircon and apatite FT central ages (solid line), only partly coincides with the alternative path. It allows us to propose a constant cooling rate over the entire
Figure 5. (A) T-t paths for the northern and southern parts of the Houilleré zone, respectively (cf. Fig. 4). Solid lines—T-t paths deduced from central ages; dashed lines—T-t paths incorporating single-grain age data. For the northern Houilleré zone, the means of the zircon and apatite central ages (solid line) and zircon single-grain ages (dashed line) of samples shown in (Caption continued on p. 000.)
temperature interval above 90 °C. Also, it would either indicate unrealistically high peak temperatures at 35 Ma or, alternatively, an age for peak temperature conditions of some 30 Ma, which is too young (see later discussion of data on the Cheval Noir unit).

The \(T-t \) path of the southern specimens is less well constrained. It may either follow only the apatite central ages (solid line) or include the youngest zircon single-grain ages of ca. 21 Ma (cf. Fig. 5C, sample WA 31), dating cooling through 200 °C (dashed line). The early parts of the \(T-t \) paths are again assumed to intersect peak temperatures (previously estimated at \(\sim 295 \) °C) at 35 Ma, i.e., contemporaneously with the northern Houillère zone.

The \(T-t \) paths using the zircon single-grain ages (Fig. 5A, dashed lines) provide the basis for reconstructing the exhumation history along the same northeast-southwest to north-south profile (Fig. 6). This reconstruction uses a geothermal gradient of 30 °C/km. Field geologic evidence indicates that the investigated part of the Houillère zone represents a homogeneously cooled and exhumed rigid block. These two assumptions (the geothermal gradient and the homogeneously cooled and exhumed rigid block). The early parts of the \(T-t \) paths are again assumed to intersect peak temperatures (previously estimated at \(\sim 295 \) °C) at 35 Ma, i.e., contemporaneously with the northern Houillère zone.

The \(T-t \) paths using the zircon single-grain ages (Fig. 5A, dashed lines) provide the basis for reconstructing the exhumation history along the same northeast-southwest to north-south profile (Fig. 6). This reconstruction uses a geothermal gradient of 30 °C/km. Field geologic evidence indicates that the investigated part of the Houillère zone represents a homogeneously cooled and exhumed rigid block. These two assumptions (the geothermal gradient and the homogeneously cooled and exhumed rigid block). The early parts of the \(T-t \) paths are again assumed to intersect peak temperatures (previously estimated at \(\sim 295 \) °C) at 35 Ma, i.e., contemporaneously with the northern Houillère zone.

Subbriaconnais Unit

Unfortunately, only one sample from the Subbriaconnais (WA 8, see Table DR1) could be dated. This Middle Jurassic lime-
stone yielded an apatite FT age of 11 Ma and a zircon age of 78 Ma. The apatite age most likely represents a cooling age. The zircon age, however, represents a “mixed” age, the single-zircon grain ages in this sample ranging between 163 and 42 Ma, the oldest ages corresponding to the stratigraphic age of the sample. The inferred temperature range (200–320 °C) is compatible with illite crystallinity data indicating high-anchizonal conditions (Ceriani, 2001), i.e., between 250 and 280 °C.

Cheval Noir Unit

The Cheval Noir unit yielded five apatite and six zircon ages, ranging from 9.2 to 3.6 Ma and from 70 to 20 Ma, respectively. The sample localities are projected onto a schematic cross section through the Cheval Noir unit (Fig. 7), essentially characterized by a syncline formed during local D2 deformation and postdating an earlier schistosity (D1). In a broader context this local D2 is related to the “Roselend phase” associated with west-northwest–directed thrusting (D3 according to Ceriani, 2001). Four samples are from the stratigraphically youngest formation exposed in the core of this syncline (WA 3, 10, and 11) and toward the limb (WA 9). Two come from the basal breccia and wildflysch formations (WA 33 and 130) in the fold limbs.

Apatite central ages for all samples display a clear age vs. altitude correlation, indicating a common exhumation rate of 0.18 km/m.y. (Fig. 7). Zircon central ages for samples from the limb of the syncline (WA 9, 33, 130) are younger than stratigraphic age, whereas those from the core of the Cheval Noir syncline yielded central ages (54–70 Ma) that are older than the stratigraphic age. Hence, the zircon data clearly indicate that grade of metamorphism in the youngest sedimentary rocks in the core of the syncline is significantly lower, which is confirmed by studies on illite crystallinity from the same area (Ceriani, 2001). Therefore, D2 folding must have postdated the peak of metamorphism associated with D1. This metamorphism predates the onset of cooling at ca. 32 Ma (zircon age of sample WA 130). Because the reset zircon ages from the limbs depend on altitude (exhumation rate of 0.12 km/m.y., Fig. 7), subsequent exhumation either postdated folding, or alternatively, folding was accompanied by erosion and thus coeval with exhumation. Because fully annealed and moderately to nonannealed samples are found at the same present-day elevations, the second model is favored. We conclude that post–32 Ma exhumation is associated with the local D2 deformation (“Roselend phase”). This interpretation is compatible with studies on the deformation history on a larger scale, including stratigraphic arguments, indicating that the west-northwest–directed Roselend thrust is of middle Oligocene to early Miocene age (Ceriani, 2001).

Valaisan Units

A total of 16 zircon and 6 apatite ages were derived from the Valaisan units. The small number of apatite ages, which range from 6.8 to 2.0 Ma, does not provide enough information concerning the details of the late cooling history. However, it is clear that cooling is significantly younger compared to the adjacent Houiller zone.

The larger number of zircon FT data allows for more detailed information. Zircon central ages, ranging between 16.9 and 9.1 Ma, are also younger than those found in the Houiller zone. Radial plots are displayed in Figure 8A. Central ages are plotted against altitude in Figure 8B. Figures 8A and 8B also include three samples (samples WA 01, 02, and 94; for locations, see Fig. 3) from that part of the Houiller zone that is, together with the Valaisan units, located in the footwall of a late normal fault (Fügenschuh et al., 1999) and that therefore exhibit a similar exhumation history.

Zircon single-grain ages range between 23 and 7 Ma. They exhibit a similarly small spread in ages all along strike within the Valaisan, in contrast to the findings in the Houiller zone (compare Fig. 4). All samples pass the chi-square test. Hence, all samples are thought to be fully annealed and to represent cooling ages. Peak-metamorphic temperatures must have been >320 °C everywhere within the Valaisan units.

In spite of full annealing, no age vs. altitude correlation emerges from Figure 8B, indicating that the isotherms (and related isochrons) did not remain horizontal everywhere because of postannealing deformation, assuming initially horizontal isotherms. Surprisingly, no clear along-strike trend is visible either, as was observed in the Houiller zone (Fig. 4). However, some interpretation is possible after subdividing the samples into three geographical groups (I, II, and III; see Fig. 8).

Group I includes the northern samples, located closest (within 2 km) to the Roselend thrust. These samples clearly display distinctly younger ages compared to sample group II, including northern samples found in a more internal position and at only slightly higher elevation. This age pattern suggests a tilt of former isotherms along an axis parallel to strike; the tilting differentially exhumed the external group I during or after cooling through the FT annealing zone, i.e., certainly later than 20 Ma.

Although group III, including all southern samples, is situated at considerably lower altitude compared to group II, these two groups exhibit almost identical zircon FT cooling ages. This result corresponds to a tilt of the paleoisotherm on the order of a few degrees around an axis perpendicular to strike. This inference is supported by geologic evidence that indicates that the internal Valaisan (i.e., the Versoyen) units axially plunge toward the southwest underneath the tectonically higher external Valaisan units and the Houiller zone (see Fügenschuh et al. [1999] and Loprieno [2001]).

Dauphinois Unit

The 14 new FT data from the external massifs and their cover range between 15.5 and 7.6 Ma (zircon) and between 5.7 and 3.1 Ma (apatite), with mean track lengths of 13 to 14 μm. These data are discussed in a broader regional context and together with literature data from outside the study area (Fig. 3).

On the Aar and Mont Blanc massifs, a large number of zircon and apatite FT data and radiometric ages are available (Schaer et al., 1975; Wagner et al., 1977; Soom, 1990; Michalski and Soom, 1990). On the basis of the age vs. altitude relationships, Michalski and Soom (1990) concluded that the Aar massif (Fig. 1) was exhumed at rates of 0.5–0.6 km/m.y. between early and late Miocene (7 Ma); exhumation rates possibly increased after that time. Concerning the Mont Blanc massif, Soom (1990) proposed that cooling and exhumation started no later than 15–12 Ma and that exhumation rates were as high as 0.9–1.0 km/m.y. since 7 Ma. In the Belledonne and Chatelard massifs, still farther south, apatite FT data by Lelarge (1993) indicate cooling and exhumation since the late Miocene at rates between 0.4 and 0.7 km/m.y., again with a possible increase during the past few million years.

The fission-track data provided by this study clearly support the interpretations given by the aforementioned authors. The age vs. altitude plot (Fig. 9) shows that all external massifs display a remarkably similar pattern. Cooling and exhumation started in the Miocene. The steeper slope defined by the apatite data indicates that cooling and exhumation rates indeed accelerated at or after 10 Ma.

South of the study area depicted in Figure
Figure 7. (A) Schematic northwest-trending profile (see Fig. 2 for trace of profile B–B’) through the external Penninic units. Sample localities are projected onto the profile, and corresponding radial plots are also depicted. (B) Age vs. altitude plot for the samples from the Cheval Noir unit: apatite (open symbols) and zircon (large solid symbols) central ages. Squares, circles, etc., in B correspond to samples identified in A. Abbreviations: Pli—Pliocene; Prb—Priabonian; SBF = Subbriancônnais front.
Figure 8. (A) Radial plots of samples projected onto a southwest-trending profile through the Valais units (profile trace C–C’ indicated in Fig. 2). Three samples (radial plots with gray background) from the Houillère zone, located in the footwall of the late normal fault depicted in Figure 2, are also included. The subdivision into groups I, II, and III is arbitrary and refers to the geographical distribution of the samples as defined in Figure 8C. (B) Age vs. altitude plot; sample “s” from Seward and Mancktelow (1994). (C) Map of the Valaisan with locations of sample groups I, II, and III.
Inferences Regarding the Tectonic Contacts Between the Different Units of the Western Alps

Fission-track analysis, in combination with structural evidence, provides information on the nature and age of major tectonic contacts. Hence, we now discuss a series of northwest-trending profiles, perpendicular to the tectonic contacts between the different units (for locations of profile traces, see Fig. 1).

In a study of the Penninic basal contact, separating the Valais units from the Dauphinois unit, Seward and Mancktelow (1994) published FT data for a section through the Rhone valley near Martigny, i.e., northeast of our study area (Fig. 10A). These authors wrote: “the results suggest that there may be a limited discrete jump in the zircon fission-track ages at the Frontal Pennine thrust as part of a broader gradient.” This statement was often overinterpreted as providing evidence for significant normal faulting across the Penninic basal contact (e.g., Sue et al., 1999). Our new data (Figs. 10B and 10C) do not support a discrete jump in the Frontal Pennine thrust (i.e., the Penninic basal contact of this paper).

Figures 10A–10D clearly depict an overall gradient of steadily not abruptly increasing zircon ages across the Penninic basal contact and toward more internal units. Moreover, normal faulting is in contradiction to structural observations, which indicate that the Penninic basal contact is characterized by top-to-the-west-northwest movement along the Roselend thrust (Figenschuh et al., 1999; Ceriani et al., 2001; Loprieno, 2001). Note that this late thrust coincided with, and reactivated, the Penninic basal contact, as shown in Figures 10A–10C. The steadily increasing zircon and apatite ages in Figure 10 postdate top-to-the-west-northwest thrusting (see discussion in Ceriani et al., 2001) and indicate tilting of the isograds around a strike-parallel axis. We interpret this tilting to be related to late Miocene (post–13 Ma) to early Pliocene thrusting of the external massifs, i.e., synchronous with Jura folding (Burkhard and Somaruga, 1998). Tilting occurs in the backlimb of the thrust-faulted external massifs (see profile of Fig. 1B); exhumation results from erosional unroofing.

The three southernmost profiles across the Roselend thrust and the Penninic basal contact (Figs. 10B–10D) display the same trend of steadily increasing zircon FT ages. Yet, because unsuitable lithologies allowed for discontinuous sampling only, there are considerable gaps in the data. Hence, it is not easy to decide on the basis of the FT data alone whether the ages change continuously or discontinuously across the Penninic basal contact. However, the structural evidence for top-to-the-west-northwest thrusting across the
Figure 10. Apatite (circles) and zircon (squares) FT ages, projected onto four schematic northwest-southeast–oriented sections across major tectonic contacts: RT—Roselend thrust; PBC—Penninic basal contact; SBF—Subbriancônois front; HF—Houiller front. (A) Val des Bagnes section taken from Seward and Mancktelow (1994). (B) Cormet des Roselend section from Fügenschuh et al. (1999), complemented by new data. (C) Bozel section running through Moûtiers. (D) Vallée de l’Arc section. For profile traces, cf. Figure 1. Diamonds located at the 30 Ma line indicate partially annealed zircon samples. Numbers above diamonds give ages in Ma.
boundary between the Penninic and Dauphinois units is unambiguous (Ceriani et al., 2001; Ceriani, 2001; Loprieno, 2001).

The more internal part of the profile depicted in Figure 10B, however, is documented by very closely spaced FT data over the Valaisian/Brianconnais boundary. The new data confirm the discrete jump offsetting both zircon and apatite ages across the Houiller front in the area near the Petit St. Bernard pass, as proposed by Fügenschuh et al. (1999). Published structural observations indicate normal faulting at the Houiller front, along a steeply southeast-dipping plane, downfaulting the Houille`re zone parallel to a former thrust (Fügenschuh et al., 1999; Loprieno, 2001). On the basis of the available fission-track data, the vertical offset across this fault is on the order of 2–3 km. Normal faulting also offsets the apatite ages and is therefore very young (younger than 5 Ma).

The third profile (Fig. 10C) runs through Molitiers and additionally crosses the Subbrianconnais unit. Toward the southeast, apatite ages markedly increase, whereas zircon ages pass from fully annealed to partially annealed. The poor resolution of the data does not permit an interpretation of the tectonic contacts based on fission-track data alone. However, structural evidence indicates that an equivalent late-stage normal fault (cf. Fig. 10B) overprints the Subbrianconnais front in the area of the profile of Figure 10C (see Fig. 2). Hence, the changes of zircon and apatite ages are probably discontinuous across this normal fault.

The fourth profile (Fig. 10D) runs parallel to the Maurienne valley and is located near the cross section depicted in Figure 7. Here, the Roselend thrust no longer coincides with the Penninic basal contact, but forms a second, more externally located tectonic thrust within the Dauphinois domain (Fig. 2; Ceriani et al., 2001). According to structural evidence, normal faulting reactivated former thrusts such as the Subbrianconnais front, whereas the Houiller front was not reactivated by normal faults here (Ceriani, 2001). Hence, apart from a possible discontinuity across a normal fault reactivating the Subbrianconnais front, both the increase in apatite fission-track ages and the change from fully annealed to nonannealed zircon samples seen in Figure 10D are again systematic and continuous within the resolution of the available age data.

In summary, the increase of FT ages toward more internal zones is interpreted to be primarily due to tilting, followed by erosional unroofing. This tilting is related to Miocene thrusting of the external massifs. Locally, this increase was documented to be discontinuous (Fig. 10B) and related to post–5 Ma faulting that reactivated former thrusts but had a normal sense of movement.

CONCLUSIONS

The late cooling pattern of the Western Alps is characterized by decreasing cooling ages from internal toward external units (Fig. 11, cf. Hunziker et al., 1992). With the exception of one documented offset by post–5 Ma normal faulting, this increase in ages is a steady one. The steady nature suggests a systematic migration of the time of cooling, and hence exhumation, toward more external units. Cooling in the Houillère zone started at ca. 35 Ma. Migration of the time of enhanced cooling toward more external units can be inferred from comparing Figures 5 and 9. Although rapid cooling in the Houillère zone predated 10 Ma everywhere, it accelerated after 10 Ma in the external massifs.

We interpret migration of cooling (and exhumation) toward external units to be related to thrust propagation. In the absence of significant normal faulting, exhumation was primarily by erosion. Exhumation followed tilting of more internal units in the backlimb of thrust-related culminations, such as that of the external massifs during the last stage of the tectonic evolution (see profile of Fig. 1B and kinematic reconstruction in Fig. 8 of Schmid and Kissling, 2000). Earlier (i.e., pre–20 to 15 Ma) cooling, as observed in the Penninic units, is most likely related to thrusting along the Roselend thrust. This late-stage thrusting was initiated in middle Oligocene times, i.e., at ca. 32 Ma. It caused burial and metamorphism in the external Dauphinois unit (see discussion in Ceriani et al., 2001), which was exhumed very much later.

Additionally, we documented an along-strike gradient. This gradient is very pronounced in the Houillère zone of the Briançonnais. As shown in Figure 11, particularly the zircons indicate a marked increase in apparent ages toward the south. The interpretation of single-grain ages in the Houillère zone indicates that this increase in age primarily reflects decreasing grade of metamorphism. Hence, the southernmost areas were less deeply buried. In the case of the Houillère zone, this interpretation results in a tilt around a strike-perpendicular axis (Fig. 6), which started ca. 17 Ma. The age of the onset of this tilting coincides with the estimated onset of cooling in the external massifs between 20 and 15 Ma. The latter show a similar, although less pronounced, age trend along strike, zircons in the Pelvoux massif being only partly reset. By interpreting cooling in the external massifs to also result from a combination of thrusting and erosional unroofing, we suggest that the lower amount of exhumation in the Pelvoux massif is related to decreasing amounts of Miocene–Pliocene shortening toward the south. Hence, northward-increasing shortening in the Dauphinois, independently documented by Gratier et al. (1989), would be the cause of tilting around an axis perpendicular to strike.

ACKNOWLEDGMENTS

We acknowledge the significant contributions of all the other members of the Basel “Western Alps team”: Romain Bousquet, Stefan Buecher, Stefano
REFERENCES CITED

Lelarge, L., 1993, Thermochronologie par la méthode des traces de fission d’une marge passive (Dôme de Ponta grossa, SE Brésil) et au sein d’une chaîne de collusion (zone externe de l’arc alpin, France) [Ph.D.thesis]: Grenoble, France, Université Joseph Fourier, 252 p.

Sahib, N., 1995, La datation par traces de fission: Aspects methodologiques et applications thermochrono-
LATE StAGES OF DEFORMATION AND EXHUMATION IN THE WESTERN ALPS

Manuscript Received by the Society 20 December 2001
Manuscript Revised 22 May 2003
Manuscript Accepted 12 June 2003

Printed in the USA